ACCELERATING

ASYNCHRONOUS EVENTS
FOR HYBRID PARALLEL RUNTIMES

Kyle C. Hale and Peter Dinda

¢ = > Northwestern HO BB Es LLINOIS INSTITUTE W

%%5 Univers lty xstack.sandia.gov/hobbes OF TECHNOLOGY

HOBBES

xstack.sandia.gov/hobbes

nautllus :

nautllus.halek co

- B
‘{ Palacios = i
An OS Independent Embeddable VMM ‘
v3vee.org v3vee.org/palacios

SOFTWARE EVENTS

anhother

event occurs
iIn some

execution
g context takes
action based

execution

context
onh event

for exmple, a thread

SOME TYPES OF EVENTS

message arrival

work is completed
work is available

something terrible happened

AN EXAMPLE: LEGION

ASYNCHRONOUS EVENTS

the receiving side Is not blocked

other things can run

WEWANT FAST EVENTS

first

moment of ¥ instruction of

event handling
code

event trigger

notification latency

we want to minimize this

7

WHAIL'S THE LOWER LIMIT?

light!

what we want: SoL1

what we actually get witn
existing software events: SoLTT

Tspeed of light

TTs**t out of luck

OUTLINE

software abstractions for asynchronous events

hardware capabillities
event performance

NEMO: benefits of kernel mode

NEMO: closer to the hardware

10

CONDITION VARIABLES

pthread_cond_signal()

pthr*ead_cond_wai\t()/ @ running

cond.
var scheduling delay

queue

’ CPU ready queue

BROADCAST

pthread cond broadcast()

D

cond.

\'L:18

thread
thread

CPUO CPU |

ready queue ready queue
12

queue

IMMEDIATELY VISIBLE ISSUES

we’re at the behest of the scheduler
broadcast is linear in number of waiters

we can’t tell scheduler to initiate a
“fast” wakeup

OUTLINE

software abstractions for asynchronous events

hardware capabilities

event performance

NEMO: benefits of kernel mode

NEMO: closer to the hardware

|4

WHAIT CANWE DO IN
HARDWARE!?

DT

inter-processor interrupts (IPls)

"" ".' handler

first instruction executed on receiving end/ code

|5

CDF

IPIS ARE FAST

0.8 r

0.6

04 r

0

1000

1200

1400 1600 1800 2000
Cycles mesaured from BSP (core 0)

16

2200

2400

OUTLINE

software abstractions for asynchronous events

hardware capabillities

event performance

NEMO: benefits of kernel mode

NEMO: closer to the hardware

|7

MEASURING EVENT WAKEUP
LATENCY

read start time()

event o S
. o] INstruction
trigger

core 0O core i

read end time()

MEASURING EVENT
BROADCAST LATENCY

read _start time()

event
trigger

first

mstruction
of handler

core O core i
first first read end time i()

instruction

instruction
of handler of handler

core k core j

read_end_time_k() 9 read_end_time_j()

EXISTING SOFTWARE EVENTS
ARE SLOW

00000

000000
S 20000 -
>
©
= 0 |
2 | 6x
n
Q@
S
3 0
0
0 . s
S & é\g
X N
@,zp oF
N
N

BROADCASTS ARE ALSO
[ERRIBLE

2 5x10° . . .
2x10° -
o
-
e 6
© 1.5%x10" 7
=
o
(7))
6 | 1
% 1x10
>
O
500000 r -
I 29x
° > Q QD
S & O
Q & S
00 $(0' 60(0
‘06 \®+ ®

SYNCHRONY

for broadcasts, we want events to be delivered
to all cores at the same time

useful for, e.g. BSP apps with events

measure the deviation of wakeup time across
cores in a broadcast

22

SYNCHRONY

70x difference between hardware IPls and
software mechanisms

hardly any predictability!

3

24

OUTLINE

software abstractions for asynchronous events
hardware capabillities

event performance

NEMO: benefits of kernel mode

NEMO: closer to the hardware

25

NAUTILUS

User Mode _CNothin

Kernel Mode

Parallel Application

Kernel

2O Parallel Runtime
Events

Aerokernel

[Hale, Dinda HPDC ’| 5]
[Hale, Dinda VEE ’1 6]
[Hale, Hetland, Dinda FRIDAY]

26

- ————

27

RETAINING FAMILIAR
INTERFACES

use a lightweight, kernel-mode framework
(like Nautilus) to eliminate overheads

maintain userspace interfaces (e.g. condition
variable wait,signal,broadcast etc.)

if we build our kernel from scratch,
how fast can we get!?

28

-MO HAS 2 CO

VARIA

L

M

- M

L

-

PATIBLE CONDITION

-NTATIONS

lightweight condition variables

leverage IPl access to “kick’ the
scheduler

29

EXISTING SOFTWARE EVENTS
ARE SLOW

30000

—

25000 [

20000 r

15000 |6X

10000 -

Cycles to Wakeup

5000 r

NEMO SPEEDS THINGS UP

30000 | | | | |

25000 r 7

20000 r

15000

Cycles to Wakeup

10000 - g

5000 -

NEMO SPEEDS THINGS UP

30000 —
25000 - 1
. - Nemo dvents
> 20000 -
X
(qv]
=
o 15000 |
(7))
@
é§ 10000 | -
5000 | .
==
O]]]]]
3P ot AP & \O
e OV S o
\\g\(O\(\G e\ G
Q P\e(\(\6((\

BROADCASTS ARE ALSO
[ERRIBLE

2 5%10° — . .
2x10° .
o
-
e 6
© 1.5%x10" 7
<
9O
o
6 | 1
% 1x10 T
>
O
500000 r -
29x
| «;*_ 5 QD
S & O
Q N &)
‘06 \®+ ®

NEMO BRINGS US CLOSER TO
Pl BROADCAS T LATENCY

2.5%1 O
2x10° | -
S
)]
_C;U 5108 |- Nemo events |
Je!
E 1><1O6 B T 7
@)
>
O
500000 |
D Q &
60 @"* e\o d“ ’&6
Gl Qv o) o o©
& <O o
pe \(\@(

SYNCHRONY

we can do 2x better than user-space
mechanisms
(with compatible interfaces)

35

OUTLINE

software abstractions for asynchronous events
hardware capabillities
event performance

NEMO: benefits of kernel mode

NEMO: closer to the hardware

36

WHAI IFWE GIVE UP THE
FAMILIAR INTERFACE!?

modify condition variable semantics

we don’t necessarily care which context (thread)
receives the event, as long as it’s handled at a
particular core

not appropriate for all situations

37

ACTIVE MESSAGES

handler le msg()

message

——————————© memory

claim: better fit than, e.g. cond vars, for many event-based

schemes
38

we want to use IPls as an
active message substrate

problem: IPls don’t have a payload!

39

allocate several event IDs

when core recelves Iinterrupt,
lookup the event ID in a table
indexed on core |ID

Action Lookup Table

event
ID 3

core 0 core | core n-|

nemo notify event(core=1, event=3)

40

event |D corresponds to an "action” (a handler)

Action Descriptor lable

event ID 3 event D O

Oxdeadbeef

handle event()

41

NEMO WAKEUPS HAVE
CONSTANT OFFSET FROM [PIS

~100 cycles
—

BROADCAST LATENCY ALSO
ON PAR\/\/\TI—I PIS

00000

000000

000000

NEMO ACHIEVES TIGHT
SYNCHRONY

< 50 cycles variation in
broadcast wakeups between
cores

SUMMARY

T you want asynch. event delivery close to hardware
latency. ..

existing mechanisms are pretty terrible
SOME WAYS TO FIX IT:

throw out general purpose OS abstractions
(e.g. user/kernel boundary)

throw out typical event abstractions

use the hardware directly!

45

THANKS

http://halek.CO dffmmmmmmmmnns

me

http://presciencelab.org « our lab
http://nautilus.halek.co « Nautilus
http://xstack.sandia.gov/hobbes
12 Hobbes Exascale

OS/R project

J

‘=) Northwestern HOBBES LLINOIS INSTITUTE ¥
&2y University OF TECHNOLOGY

xstack.sandé\.égov/hobbes

http://halek.co
http://presciencelab.org
http://nautilus.halek.co
http://xstack.sandia.gov/hobbes

BACKUPS

TIGHT SYNCHRONY FOR IPIS,
NOT FOR SOFTWARE EVENTS

00000000000

CDF

NEMO GETS US CLOSER

I

I

0.8 | : ’ '|
I

|

I

I

0.6

|
04 : ' |
| / '
' , | :
. pthread condvar ' b
021 | futex broadcast ~ ----- ' .
' Aerokernel condvar - - = o
: Aerokernel condvar + IPI — - - o
, broadcast IPI - —_— o
0 s , . .I.....-r" . e
1000 10000 100000 1x106

49

NEMO ACHIEVES TIGHT
SYNCHRONY

~50 cycles

00000

HOW FAST CAN A
NOTIFICATION BE IN H/WW?

poll!

while (!stuff happened)

cache memory| cache

cache invalidation (10s of cycles)
|

tffhpp ned

CDF

Unicast IPl vs memory polling 52

1 . | | |
unicast IPI —

synchronous event (mem polling) =—— -

0.8

r = - _[- -
0.4 I .
r._J

0.2 |'\ -
interrupt network
I'J

O ~ = =" | |
0 500 1000 1500 2000

Cycles mesaured from BSP (core 0)

WHY THE GAP?

we’re bounded by interrupt handling logic in
the hardware

destination handling

APIC write \ | [Pl cost breakdown
time on wire

hote: these are indirectly measured

54

we used to have a problem like this with
INT8O0 syscalls...

solution: introduce a new
instruction, skip a lot of the
interrupt handling logic

55

CDF

0.8

0.6

0.4

0.2

I I — PE——

unicast IPI —
synchronous event (mem polling) —— - /
projected remote syscall -_— - |
{
I '
o
1 /
I I
. J
— !
: ; cost of dest.
’ handling
| < >
;o
-~ = =" — i | |
500 1000 1500

Cycles mesaured from BSP (core 0)

2000

56

